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I. INTRODUCTION

The problem of shimmy of rolling wheels has been of interest for many

years, particularly in the case of aircraft design, where weight restrictions

limit the remedies which may be applied to prevent this instability phenomenon.

A number of theories have been proposed for quantitatively explaining shimmy

characteristics in the rolling wheel. These range from relatively simple

theories involving the point contact of a rigid wheel to much more sophisti-

cated theories treating the tire as an elastic body of some complexity. Among

these latter theories, perhaps the most common single element is that of the

so-called "string theory" description of the motion of the center line of a

rolling pneumatic tire. This name arises from the description of the tire

midplane by means of a relatively simple differential equation identical to

that which would be used to describe a string under tension with lateral

restraint by an elastic foundation. It is a purpose of this investigation to

assess the adequacy of these string models for the pneumatic tire.

Although several theories have been proposed for the calculation of

shimmy characteristics, only limited experimental work is available in this

area, and partly as a consequence of this, clear indications pointing out the

best shimmy theory are not yet available. In addition, experience with design

problems seems to indicate that shimmy phenomenon can occur under situations

when they are not predicted by existing theoretical formulations. For this

reason there is still continuing interest in determining the source of in-

adequacies of the present theories. It is conceivable on the one hand that

1



the theories themselves could be in some manner deficient. It is also con-

ceivable that the elastic constants used to describe a pneumatic tire, in

terms of string theory, could be in error since these constants are almost

universally taken under static or at best slow rolling conditions. Another

major objective of this study is to attempt to ascertain whether such

statically-determined elastic constants are adequate for pneumatic tire de-

scription.
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II. SUMMARY OF RESULTS

This study is based upon scale modeling of a 40 x 12, 14 PR Type VII

aircraft tire fabricated to a scale ratio of 8.65. A number of such scale

models were made and their static elastic constants, as well as slow speed

rolling constants, were determined. This data was used as input for a se-

quence of tire calculations.

The tire calculations carried out here used both point contact and finite

contact patch length theory as is commonly used in the tire shimmy literature,

for example, von Schlippe and Dietrich [1] and Segel [4]. Computations were

carried out for the case of a wheel under forced sinusoidal steer angle oscil-

lation and, separately, under forced sinusoidal lateral displacement of the

wheel hub center. The quantities calculated were lateral force as a function

of time, self-aligning torque as a function of time, and their phase angles

with respect to either the forced steering variation or the forced lateral

variation. The output response quantities were sinusoidal in all cases, and

hence the output computation may be thought of in terms of an amplitude and

a phase angle with respect to the forced displacements.

Such computations were compared with data obtained from these small

scale tires under dynamic tests on a 30-in. diameter small scale road wheel.

Frequencies from 1 to 7 Hz and surface velocities from 0.84 to 38.7 ft/sec

were used. It was found that the critical ratio describing these motions

was path length dependent, in that all quantities could be reduced in a di-

mensionless fashion by expressing them as the ratio of input frequency to

3



surface velocity. The data also showed good linearity of force and moment

characteristics with input steer or displacement amplitudes. These experi-

ments are more extensive than the earlier data of Saito [5], but are generally

in agreement with them.

In general the experimental data agreed well with calculations based on

finite contact patch string theory. For the case of lateral displacement cf

the hub center point, all characteristics seem to be predicted quite well by

string theory except for self-aligning torque, whose predictions are high by

a factor of two. For the case of steer angle displacement, all properties

were predicted well using string theory with the exception of the lateral

force phase angle, which differs from experimental data by approximately 50° .

The elastic constants of the model tires were varied in order to see if

variations in them resulted in closer agreement between theory and experiment.

However, no single consistent set of tire elastic constants could be found

which better explains the dynamic response of the tire than the constants

gotten directly from static and slow rolling measurements.

In corroboration of this latter conclusion, the tire lateral elastic

constant was measured as a function of frequency and essentially no frequency

effects were found up to 7 Hz.

4



III. TIRE CONTACT ANALYSIS USING STRING THEORY

The equation governing tracking of the contact patch is based on the

position and orientation of the leading edge of the wheel, as developed by

von Schlippe and Dietrich [1]. Referring to Fig. 1, the general form of this

equation is

dy 1
(1)ds -

For finite contact length 2h,

z = y - (x+hO) (2)

Y

z

WHEEL PLANE

*x /TIRE CONTACT PATCH

h GROUND
CONTACT

z e LENGTH

-JY

Fig. 1. Geometry for tire contact analysis.
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Substituting (2) into (1) gives the fundamental equation for tire tracking

dy 1 1 1
ds + = 1 x + $(1 + h) (3)

Two special cases of the tire tracking problem will be investigated. First

the simplified point contact problem and then the finite contact patch length

approach. Each case will consider two separate input conditions, one a pure

sinusoidal lateral displacement and the other a pure sinusoidal steer angle

input.

A. POINT CONTACT THEORY

The point contact problem considers h= O in (3). This can then be sepa-

rated into two problems. The first will let 0 = 0 and x = x sin Qt, where

Q is the frequency of a sinusoidal lateral displacement. The second case

will let x = O and 0 = * sin Mt.
O o

Case 1: Sinusoidal Lateral Motion

· = 0 and x = x sin Qt (4)

Equation (3) becomes

dy y x1 sin at
ds y 0 

where v t = s.
o

The complementary solution is a transient and decays rapidly.

y =Ae/C

6



Thus a particular solution of the form

(6)

(7)

Yp = yo sin(Qt + a)

will be used as the solution to (5), where

tan = - - -
v rw

o

and

Y vYo Vo
°o° = 0 Icos al

o 22 2
Jv + (N~)

0

The lateral force on the hub may be expressed as

F = KLZ = KL(Y-X)

Substituting (4), (6), and (7) into (9) and simplifying gives

F* = K
L

xo sin Ca.l sin(nt + a)

(8)

(9)

(10)

where

sin a cos a
tan a = cos (11)

2
cos a- 1

Therefore the maximum lateral force due to a sinusoidal lateral displacement,

assuming a point contact patch is

(F )max KL'ox sin o l

and its corresponding phase angle is given by (11).

7
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Case 2: Sinusoidal Steer

x = 0 and * = * sin nt
o

Equation (13) now becomes

dy 1 y= sin Qt
ds A o

Again, using only the steady state solution,

y = yO sin(nt + a)

where again

tan a = -
v
O

and

YO

XkP
O

v
o

4v2 + (xn)2

= cos a

The lateral force on the hub becomes

F. = KLZ = KLy = KL o01cos ajl.sin(Qt + b)

where

(19)

Therefore the maximum lateral force due to a sinusoidal steer angle assuming

a point contact patch is

8
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(14)

(15)

(16)

(17)

(18)



(F*)max
= KL% |lcos a| (20)

and its corresponding phase angle is given by (19). It is noted that the

point contact theory necessarily predicts no self-aligning torque for either

the case of sinusoidal lateral motion or sinusoidal steer motion.

B. FINITE CONTACT PATCH LENGTH

A finite contact patch of length 2h is now introduced by means of the

concept that the patch is immovable once it contacts the ground. Hence the

forward contact point is the critical one, since it determines all that fol-

lows. Denoting the trailing edge by a bar,

y(s) = y(s-2h) (21)

Assume for simplicity that the points z and z, and hence y and y, are con-

nected by a straight line. Referring to Fig. 2, the side force F$ and the

self-aligning torque C may be computed.
z

00 OD -cc

F = f oad = o f ze- c l dtl + f aze
-
ct2 dt2

-00 0 0

h

-h 2 h2

where a is a stiffness constant per unit length. Carrying out the integration

and simplifying,

F, = a(z+z)(h+%)

9



S

A

-J

w

z
Li,

Li

I
k- 5 1I

I1

TIRE CONTACT PATCH

I

Fig. 2. Geometry for determining F* and C .
IfZ

However,

F* K (Z+)

K 
2 

KL

-a2(h+X)

Similarly,

C
z

c0

= a of

h
+ a f

-h

thus

(22)

(23)

(h+Sl) ze-Cl dtl

t V + 2 + 2)

-00

-of
0

(h+t2) ze
-
c

t2 d 2

10



Integrating and simplifying

C = · KL · + (24)

Case 3: Sinusoidal Lateral Motion

As before, 0 = O, x = x sin Dt and y = y sin(Ot + a). Now, however

y y in - (s-2h) + (25)

0
Thus z = y-x remains as before, but now z = y-x. Also yo = x cos a which is

the same as before (8). Substituting z and z in (22) and simplifying

2F
= C sin(nt+c) = z+z (27)

K
L

where

-sin 2h 2- Q
v v

vo
0

and

C = X o cos a - cos + 2 c ) (29)

Therefore the maximum lateral force due to a sinusoidal lateral displacement,

assuming a finite contact patch length, is

(Fly) = 2 x |cos a| 0 - cos + sin 2h + 2(Fmax 2 0 -v v vsi

and its corresponding phase angle is given by (28).(30)

and i ts corresponding phase angl e is given by (28).

Unlike the point contact theory, the finite contact approach predicts a

11



self-aligning torque for a lateral displacement input. This is obtained by

substituting z and z in (24) and simplifying

2C
z = D sin(Ot+d) = z-z

KK +
L L 3(h+)

where

- 2h 

da+a0 2xjcosin V I
d = arctan , ,- +-andD

cOs--Vo

(31)

Thus

C = K
z I

Therefore the maxim

placement, assuming

(Cz)max

[ h2
]

5 + ( xl cos a sin v I sin(2t+d) (3 

num self-aligning torque due to a sinusoidal lateral dis-

a finite contact patch length, is

- KL + 3(h xcos a sin h (3i
LL s0h~j vol

3)

and its corresponding phase angle is given by (31).

Case 4: Sinusoidal Steer

For sinusoidal steer the forward portion of the contact patch is governed

by

dy = _
ds A

but, for a finite contact patch length, z = y - h%, thus

dy 1 1
ds = (+h)

12
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Again using a particular solution y = y sin(Qt +a), with = * sin Qt,
0

tan a = - v- asvo

Y =
0

before, but

o(1 + h)'o 
/(l) 2+ 2

= 4 (x+h) Icos Caj
0

Now, to find F* and Cz, z and z must be substituted into (22) and (24).

z = y - hO and

y = YO sin(Qt +a)

z = y + hO

and y = yO sinL (s-2h) + a

Thus, from (22),

2F 

K
L

E sin(Qt+e) = z+z

Substituting for z and z and simplifying

- 2h.Q

e = arctan sin 2hVo + C

To

and

E = 2(A+h) 4) cos a cos (h)

Thus,

F = KL(h+k) 4 .|cos a cosS(v)
\ o

Therefore the maximum side force due to a sinusoidal steer angle, assuming a

13
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with

(35)

(36)

-sin (t +e) (37)



finite contact patch length, is

(F1)max
= KL(h+%) 4'¢ cos -.cos )_olI 

and its corresponding phase angle is given by e in Eq. (36).

The self-aligning torque is found from (24).

2C
z -

F sin(Qt+f) = z-z

Substituting for z and z and simplifying

F = c ([ E-h) cos a - (A+h) cos a cosk os ]2

+ L+h) cos a ' sin - 2h sin a] 

(2 o - (X+h)
f = arctan( . .

L(X+h) cos V-

2hQ)
sin o +

- (x-h) J

Cz 2= n + ( F · sin(Qt+f) (41)

Therefore the maximum self-aligning torque'due to a sintusoidal steer angle is

(C ) = - [ 2 ([ + · * F (42)
(Cz)max 2(h+k

and its corresponding phase angle is given by f in Eq. (40).

14
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IV. SCALE MODEL AIRCRAFT TIRE PROPERTIES

Scale model aircraft.tires can be built whose static and slow-rolling

properties closely match a full size prototype on a dimensionless basis, as

was reported in Ref. [2]. The tires used in this study are models of a 40 x

12 -14PR Type VII aircraft tire with a 8.65 scale factor. Their static prop-

erties closely match the properties reported in Ref. [2]. Figure 3 gives a

comparison of the two tires used in this study with the prototype in a slow-

rolling, yawed tire test. Side force and self-aligning torque properties are

important in evaluating shimmy theories, as will be shown in the following

sections. Since in shimmy theories tire velocity is one of the independent.

variables, it becomes important to determine the velocity dependence of these

properties in steady state rolling. For this reason, a series of five model

tires were run at various yaw angles up to speeds of 80 ft/sec, and side force

and self-aligning torque recorded. Figures 4, 5, and 6 show those results

plotted against V /J7/P, a dimensionless velocity. The pneumatic trail, q,

is the ratio of C /F. The results show essentially no velocity effect on

steady state side force and self-aligning torque of a yawed tire. Dynamic

and steady state data for full size aircraft tires is scarce, so no compari-

son of model and prototype is possible here. However, since static and slow-

rolling properties of model and prototype agree, it can be expected that the

steady state results presented in Figures 4, 5 and 6 and the dynamic results

presented in Section XI are representative of full size aircraft tire prop-

erties.
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Surface: CLEAN CAST IRON
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Surface: CLEAN CAST IRON

STANDARD OPERATING CONDITIONS
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The model and prototype tire operating conditions and static shimmy

properties are given in Table I. The lateral stiffness KL was obtained

statically and also at frequencies up to 6.5 Hz, the highest frequency used

in the lateral dynamic experiments. The lateral stiffness did not vary more

than ±3% in the entire frequency range.

In view of the fact that the tire elastic properties determined by static

or slow rolling experiments did not deviate from those determined dynamically,

within the frequency ranges covered here, the static tire properties given

in Table I were used for the subsequent shimmy calculations given later in

this report.

TABLE I

STANDARD TIRE OPERATING CONDITIONS Al

Tire D Fz
(psi) (in.) Po

D2

4odel A-20 25 4.53 .101

4odel A-21 22.5 4.54 .098

Todel A-22 20. 5 4.58 . 098

Todel A-23 19.5 4.61 .099

lodel A-24 21 4. 59 .099

Prototype 95 39.3 .099

ND STATIC SHIMMY

h
D

.202

.207

.211

.214

.214

.210

D

.523

.404

.390

.298

.324

PROPERTIES

KL

poD

.804 .153

.762 .167

.776 .136

.788 .132

.816 .127

.665 .100
40 x 12 14 PR

Type VII
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V. DYNAMIC MEASUREMENT AND DATA ANALYSIS 

The lj—l/2-in. diameter model tires previously described were run on the 

30-in. diameter cast iron road wheel discussed in Ref. [2]. A model tire 

and hub were mounted in a wide yoke which allowed considerable lateral mo

tion. The yoke is in turn mounted on a hinged arm in such a way that it 

can pivot about a vertical center line of the wheel. The hinged arm is loaded 

vertically by a series of dead weights. The complete arm assembly is shown 

in Fig. "J. 

Fig. 7- Overall view of model tire testing apparatus, 

21 



The lateral motion of the wheel was obtained by attaching the axle to an

oscillating yoke which gave a sinusoidal displacement of known magnitude.

This was driven by a modified saber saw, the saw having included in its gear

train a Scotch yoke mechanism giving a very clean sine wave. The motor speed

control in the saber saw allowed a frequency range of 1.6 to 6.5 Hz after

extra gearing was added. The throw or pitch of the walking beam was adjust-

able, and is illustrated more clearly in Fig. 8. This allowed variable ampli-

tudes from 0.025 in. to 0.200 in. in either direction. A linear variable

differential transformer attached to the axle gave an electrical signal pro-

portional to the axle lateral displacement. The lateral force between the

point of fixed displacement and the tire was measured by means of a strain

gage force transducer inserted between the axle and the walking beam of the

saber saw mechanism. Similarly, the corresponding self-aligning torque was

measured by a small cantilever beam force transducer capable of measuring

the torque on the yoke about its vertical pivot axis. Figure 9 illustrates

the entire apparatus as it was set up for forced lateral displacement of the

rolling tire. The saber saw is on the right with the force transducer located

between the outside of the yoke and the saw. The linear variable differential

transformer is on the left side of the yoke, while the self-aligning torque

transducer is underneath the arm and is hidden from view in Fig. 9.

Sinusoidal steering motion was imposed using a low force level electro-

magnetic shaker attached to a steering arm, which may be seen most clearly

protruding from the front of the yoke in Fig. 7. This shaker was used since

it produced an extremely clean sine wave at the low force levels needed for
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steering the tire. The shaker operated up to 10 Hz. It gave amplitudes up

to 2.6° using a 6-in. steering arm. The shaker was attached to a 6-in. tube

at the front side of the yoke as is shown in both Figs. 7 and 8. Strain gages

at the base of the arm allowed the measurement of the moment input to the

tire. The linear differential transformer was set perpendicular to the axle

of the wheel and 6 in. from the wheel center, giving a signal proportional

to a steering angle. The axle of the wheel was restrained from lateral motion

and the lateral force measured using the same force transducer as in the

lateral displacement experiment. This system allowed the tire to be excited

in pure sinusoidal steer while simultaneously measuring the resulting force

and moment output.

The input displacement and the resulting force and moment signals were

all recorded simultaneously on a four channel tape recorder. The frequency

of the input motion was swept over the entire range from 1.6 to 10 Hz. The

data was analyzed using a swept frequency computer program developed at the

Bioelectrical Science Laboratory at The University of Michigan. This technique

is described in Ref. [3]. Figure 10, from Ref. [3], shows the basic elements

of the process in its schematic form. Figure 11 is a sample Bode plot output

of the torque and phase angles for a steer input of the model tire A-23. How-

ever, for the results in Section VI, the amplitude ratio and phase angles were

printed out directly from the computer program. It should be noted that this

technique extracts the frequency response from quite noisy output signals

provided that the input is a clear sinusoidal signal. This computer program

is thus quite versatile in its application.
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Fig. 10. Schematic diagram of system frequency response extraction.
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Similar tests were also run with the tire lifted slightly from the road-

wheel. These experiments gave the inertial loading and phase angles associ-

ated with the mass of the tire, yoke, and axle and the saber saw drive system.

These inertia forces and corresponding phase angles were then subtracted vec-

torially from the dynamic signals in order to remove all the inertia effects

from the data.
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VI. COMPARISON OF STRING THEORY CALCULATIONS AND MEASUREMENTS

The fundamental purpose of this report is to compare calculated dynamic

tire properties, using string theory as a basis, with such properties mea-

sured experimentally. Examination of the general nature of string theory

seems to show that the clearest way to achieve this is to separately apply

lateral displacements to the tire, both theoretically and experimentally, and

to in addition separately apply a sinusoidal steer angle to the tire, again

in both the analytical and experimental modes. Comparison of the resulting

force and moment amplitudes and phase angles then provides a good test of

such string theory. This in turn should be helpful in deciding whether or

not such theories are adequate for shimmy computations.

The fundamentals of string theory were outlined in Section III of this

report, and calculations were made using those expressions for lateral force,

self-aligning torque and their corresponding phase angles under conditions of

lateral wheel displacements and steer angle displacements. The tire param-

eters used in these computations, namely, A, h, and KL were obtained from

static values or based on static measurements of the model tires used in

these experiments.

One clear aspect of string theory as used to describe the action of

pneumatic tires is the complete linearity of force and self-aligning torque

with respect to lateral displacement or steer angle. The force and moment

quantities are exactly proportional to displacement or steer angle in the

steady state condition. In order to check this result experimentally, both
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lateral and steer angle displacement experiments were conducted at two ampli-

tudes. The results are shown at Figs. 12 and 13 for two different surface

speeds. Figure 12 shows self-aligning torque, lateral force and the two cor-

responding phase angles due to lateral displacement of the wheelhub. It is

interesting to note that at the smaller of the two surface velocities, the

lateral force is larger for the 0.05-in. lateral displacement than for the

O.10-in. lateral displacement. This indicates a reversal from linearity for

this relatively low velocity condition. On the other hand, at the higher

velocity lower lateral force values are observed at the lower lateral dis-

placement. Figure 12 illustrates that linear string theory is not particularly

effective in this circumstance. Figure 12 also shows that the self-aligning

torque per unit lateral displacement is always larger for the smaller of the

two displacement inputs. It is known that the self-aligning torque is very

sensitive to slip in the contact patch and to surface conditions. It appears

that the basic linearity is not necessarily assured in the experimental situa-

tion.

Figure 13 shows self-aligning torques, lateral forces, and phase angles

for sinusoidal steer angle input. Here, in a general way, the results show

excellent linearity. Two features are of particular importance here. The

phase angle for the lateral force exhibits a discontinuity at 7.8 Hz at 3.1

ft/sec surface velocity. This probably indicates a system natural frequency

since the corresponding lateral force has dropped to a very small value at

that condition. The self-aligning torque also exhibits a maximum at this

same frequency at a surface velocity of 19.7 ft/sec. In addition, self-
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aligning torque also exhibits a large and obvious shift at approximately 3

Hz, which may be a tire natural frequency. Calculations based on string

theory indicate that such is the case. The phase jump accompanying this

natural frequency indicates that small amplitude steer motion is more sus-

ceptible to phase jump effects than large amplitudes steer motion. This

seems to imply that'small amplitude experimental work would be more satis-

factory for checking various shimmy theories than would large amplitude ex-

periments.

Again, string theory calculations are shown in Fig. 13 compared with ex-

perimental data. In general, the experiments indicate an approximately linear

relationship between steer angle amplitude and the corresponding lateral force

amplitude. This implies that tire properties such as lateral stiffness re-

main nearly constant over this range of amplitude and frequency. Hence, the

assumption that lateral stiffness is a constant property of the tire, mea-

surable at zero frequency and zero rolling velocity, is probably justified.

Figures 14, 15, and 16 show similar results for other road wheel veloci-

ties. Predictions based on the largest and smallest road surface velocities,

again using string theory, are also shown. Figures 17 and 18 are three-di-

mensional plots of lateral force for varying lateral and steer angle dis-

placements. These attempt to convey the relationship of excitation frequency

and road speed to the corresponding lateral force.

An examination of string theory equations as shown in Section III suggest

that the important independent variable is the ratio of the excitation fre-

quency to road speed. Figures 19, 20, and 21 present the results from a
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Fig. 17. Lateral force vs. road speed vs. lateral excitation frequency.



FL

HZ

A-23 ST'D CONDS.
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variety of road speed tests, but now in the form of dimensionless parameters.

The independent variable is chosen to be ( ) and may be thought of as a
d V

forcing frequency. The dependent variables are dimensionless lateral force,

self-aligning torque and their corresponding phase angles. In Figs. 19, 20,

and 21, the most noticeable result is that the data clusters very well about

a single band using this ratio Q/v . Two or more experimental data points

near or at the same dimensionless frequency are actually data from two or

more separate road speed tests. The data for lateral displacement of tire

A-20 is shown in Fig. 19. There is excellent grouping of the self-aligning

torque and the lateral force response values, as well as the phase angles,

with the self-aligning torque having the greatest dispersion. Similarly,

data for the lateral excitation of tire A-23 is shown in Fig. 20. Again the

grouping is excellent except for some of the scatter in self-aligning torque

curves. However, it should be pointed out that self-aligning torque is ex-

tremely sensitive to friction and surface property conditions which may vary

from test to test.

The data for steer angle excitation of tire A-23 is shown in Fig. 21.

Again the grouping is excellent except for a series of isolated points shown

in the dotted areas. All of these points represent data taken between 7.5

and 8 Hz excitation, at various road speeds. Two of these areas were previ-

ously mentioned in a discussion of Fig. 13 as areas involving natural fre-

quencies of the tire or supporting arm system. The independence of road

speed from this phenomenon suggests that the 7.8 Hz region is probably one

of the natural frequencies in the entire hinged arm or some part of it.
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In any case these areas contain data isolated from the general range of the

other test points.

Figures 19 and 20 show predictions for lateral displacement of model

tires A-2C and A-23. Point contact theory seems to predict lateral force

and phase angle relationships similar to those observed in the experiments.

However, the basic limitation of point contact theory is that it predicts a

zero self-aligning torque. Finite contact patch theory seems to predict a

correct general trend but the numerical values are not as close to the ob-

served data as is point contact theory. The lateral force predictions are

approximately 20% higher than the observed data while the self-aligning torque

predictions are about 100%o higher. However, the phase angle of the self-

aligning torque is remarkably close to the observed data and so in general

one may conclude that on the whole string theory appears to be a reasonably

good method of predicting the dynamic characteristics of a pneumatic tire

under lateral excitation.

Similar predictions for the case of sinusoidal steer excitation of model

tire A-23 are shown in Fig. 21. Again point contact theory only predicts

side force and its phase angle. The amplitude of this force agrees fairly

well with observed model tire data but the phase angle prediction differs

somewhat from the observations. On the other hand, the finite contact

patch theory seems to predict values much closer towhat is observed. Here,

however, the lateral force phase angle predictions indicate a discontinuity,

while the observed data shows more gradual changes. Self-aligning torque

predictions appear to be on the whole rather good.
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An apparent weakness of current shimmy theories is their dependence upon

elastic properties and relaxation length of tires taken from 'static or slow

rolling tests. One objective of this present study was comparison of predic-

tions of dynamic tire forces and moments with measured values in order to

validate this procedure, or to prove it wrong. In order to check this, a

parametric study was carried out in which varying lateral stiffness values,

K and relaxations length, X, were used in order to attempt to find a set of
L'

values which would cause our computations to agree more closely with the

experimental values of Figs. 19-21. Various attempts to do this seem to show

that the static values obtained from Table I give results approxiamtely as

good as can be obtained by any other set of values.

In summary, the results indicate that lateral forces and self-aligning

torques are linearly proportional to tire lateral stiffness KL and to the

amplitude of either steer or lateral displacement. In addition, the results

show that the ratio S/v is the proper independent variable by which fre-

quency should be measured. The comparison between experimental data and

string theory predictions indicates surprisingly good agreement between the

two in a general way, using lateral stiffness and relaxation length values

obtained from the static or slowly rolling tire.
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